

Proposed Solution For a DE2Bot to Park Semi-

Autonomously in Perpendicular and Parallel Spaces and

Fully Autonomously in Perpendicular Spaces

Jacob Campbell

Alex Cornila

Anina Mu

Moradeke Olumogba

Georgia Institute of Technology

School of Electrical and Computer Engineering

Submitted

April 7, 2017

Executive Summary

This document is a design proposal for the Spring 2017 ECE 2031 final project concerning the

autonomous parking of a DE2Bot [1]. The design involves using assembly language to program the robot

to respond to remote control commands, park itself in both perpendicular and parallel parking spaces, and

move autonomously from a starting point outside a parking lot to fully park itself into any one of seven

perpendicular parking spaces [1]. This proposal provides an overview of the types of parking to be

implemented, detailed descriptions of the proposed algorithms for the robot to execute autonomous

parking and respond to remote control commands, and justifications for selected implementation methods.

Furthermore, information regarding the team’s management and contingency plans are provided.

Proposed Solution For a DE2Bot to Park Semi-

Autonomously in Perpendicular and Parallel Spaces and

Fully Autonomously in Perpendicular Spaces

Introduction

Design Problem and Project Requirements

This document describes a solution for three types of autonomous parking to be performed by a DE2bot.

Using the SCOMP assembly language, the robot will be programmed to perform semi-autonomous

parking maneuvers in individual parallel and perpendicular parking spaces as well as fully autonomous

maneuvers in a parking lot of perpendicular spaces [1].

Figure 1. A visual representation of the spaces in which the robot will park seen in [1].

For all types of parking, the robot will park and align itself with the spaces in the orientations indicated by

Figure 1, given that the robot in the image is facing forward at its starting point [1].

Figure 2. The dimensions the each space shown in the parking lot Figure 1 are 35x45 cm.

Proposed Solution to the Three Types of Parking

The proposed solution implements a remote control allowing the user to determine the movement of the

robot. For the semi-autonomous perpendicular and parallel sequences, the remote will first be used to

manually move the robot in front of the desired parking space, then park itself at the press of a button

before returning control back to the user. The fully autonomous perpendicular parking will consist of the

robot moving itself from the starting point and through the lot before parking into a space.

Performance Advantages of the Solution

The proposed implementation is effective and robust because it contains definite algorithms that depend

on constant, predefined values such as distance and velocity, enabling the robot to move in a consistent,

predictable manner.

Technical Approach

A State Machine to Determine Parking Maneuvers

This implementation features a state machine that enables control of the robot through the IR remote.

Figure 3. The MControl subroutine contains the functionality of the remote control with specific buttons

representing different inputs.

Use of an IR Remote to Enable Human Interaction

When the robot is reset, it is automatically brought to the MControl state. In MControl, the remote’s

numeric keypad is used as an intuitive controller to manually select the robot’s movements. The user may

move the robot forward with key 2, backward with key 8, left with key 4, and right with key 6. The

forward and backward keys jump to subroutines that cause the robot to move in a straight line forward or

backward for one second at a velocity of 33 cm/s. The left and right keys jump to subroutines that rotate

the robot 90 degrees counterclockwise or clockwise, respectively. All four return the program to

MControl, allowing the user to retain manual control of the robot until otherwise specified. Additionally,

the user may press MUTE on the remote to abort control of the robot and end any ongoing processes.

Figure 4. The IR remote used to process user input and control of the robot [2].

AutoSelect: Determining a Parking Maneuver to Execute

Figure 5. Graphical representation of the AutoSelect state that enables the user to select between the

different parking modes and the corresponding assembly code implementation.

In MControl, the user may additionally press key 5 to enter another state called AutoSelect. AutoSelect

reads in user input from the remote to determine which of the three parking maneuvers to perform. Key 1

jumps to the subroutine that performs semi-autonomous perpendicular parking while key 3 jumps to a

different subroutine that performs parallel parking, both of which restore user control by returning to

MControl upon successful completion of the parking operation. Key 2 indicates that the robot should

perform a fully autonomous perpendicular parking job. This brings the program to another state that waits

for the user to input a specific parking space number with numeric keys 1-7 corresponding to the seven

spaces in the parking lot shown in Figure 1. Once the user has selected a valid space number, the robot will

immediately move itself from the starting point to the location and park itself completely.

Semi-Autonomous Perpendicular Parking

Once the robot has been manually moved in front of the parking space in MControl, it will be faced 90

degrees counterclockwise to its final parked position. To begin the autonomous motion, the user will

press key 5 to enter the AutoSelect state then key 1 to execute the perpendicular parking subroutine. This

process will cause the robot to rotate 90 degrees clockwise to align itself with the space and move forward

until reaching a position completely within the space. At this point, the robot will halt and the program

will return to MControl.

Semi-Autonomous Parallel Parking

Figure 6. Step-by-step depiction of the parallel parking movement.

Similar to the semi-autonomous perpendicular parking, the robot will be manually driven to the space

using the remote control. For this maneuver, however, the robot will initially be faced parallel to its final

orientation, thus requiring an extra rotation. Once again, key 5 will enter AutoSelect, and key 3 will

execute the parallel parking subroutine. The robot will rotate 90 degrees clockwise and move into the

space in the same manner it would move into a perpendicular space. Additionally, the robot will rotate 90

degrees counterclockwise to align itself with the space before it stops and the program returns to

MControl. This parallel parking solution proves most convenient given the difficulty to pivot at different

angles and the robot’s unique capability to rotate in place with ease.

Fully Autonomous Perpendicular Parking

Figure 7. Flow chart representing an autonomous perpendicular parking process to a space with a four

second travel distance from the beginning of the lot.

When the robot is at its stationary starting point, key 5 brings the program to AutoSelect and, then key 2

brings the program to the fully autonomous perpendicular parking state. At this point, another remote key

should be pressed to indicate the desired space in which to park. The IR code of the key pressed is

immediately translated to a space number and stored as a variable to be used later. First, the robot will

move forward, turn 90 degrees clockwise to align with the lot entrance, move forward into the lot, turn 90

degrees counterclockwise to travel to the parking space, and move forward for a specified time interval

determined by its speed of 33 cm/s and the travel distance to the indicated space, determined by the width

of the spaces and the space number that was earlier stored in memory. Upon reaching the space, the robot

will immediately execute the perpendicular parking subroutine described above.

Performance Advantages of this Solution

This solution is effective because it conserves memory, requires no hardware modifications to the existing

system, and provides a user-friendly control interface.

Memory is saved by recycling code through the state machine and subroutines. Furthermore, for the fully

autonomous sequence, this implementation uses the predetermined values to determine the movement of

the robot from the entrance of the lot to the space. The algorithm based on known constants is stronger

than one that may be based on unreliable values such as sensor measurements. This requires fewer

resources at compile time by avoiding code complexities and less computational power at run time by

reducing dependencies on dynamic parameters. Minimal resources are required to successfully use this

program, as it only depends on the direction, angle, and speed speed parameters of the bot and the

onboard timer.

Another benefit of this solution is that no hardware modifications to SCOMP and the DE2Bot are

required. Taking advantage of a previously tested system promotes robustness and portability, allows

swifter debugging during program development, and prevents unexpected runtime errors that may arise

due to potentially dangerous third-party additions and modifications to the hardware.

Lastly, this design provides a simple, intuitive user experience. The controls of the remote, as described in

the Technical Approach, correspond to arrow keys of standard direction controls, and the different modes

expand the number of possible key inputs.

Management Plan

The Gantt chart in Appendix A shows the major tasks to be completed, time estimates for each phase of

the project, and an overall project timeline. Initially, it was necessary to devote time to determine the

initial starting point of the provided system by writing simple programs with the SCOMP assembly

language, reviewing the robot and remote manuals, and examining previously implemented

functionalities. The next step was to brainstorm ideas to develop an optimal solution for this particular

problem.

The first major task was to develop a robust algorithm for semi-autonomous perpendicular parking and

derive the other algorithms from it. The next task was to implement manual controls and integrate the

remote with the program. Throughout the development period, considerable time was spent debugging

code, identifying weak points, and adjusting the strategies as needed. Additionally, gathering and

organizing material for the project proposal remained a priority throughout the process.

Contingency Plan

The straightforward nature of the implementation may be a tradeoff for precision. Limitations may arise

from from the dependencies on predetermined measurements, requiring the robot to be placed at exactly

the same starting location before all runs of the fully automatic parking sequence. In addition, imperfect

odometry may cause the robot to stray from a straight line of motion when moving over long distances to

the farthest parking spaces. Possible alterations to accommodate such situations may be to double check

the robot’s displacement using its x and y positions, program the robot to pause and reset its orientation

while moving, or return to MControl in response to remote key controls.

An issue that may arise for the user could be confusion over the current state of the robot. For example,

the user must press three keystrokes to execute a fully automatic parking sequence. To appease this issue,

button 0 has been programmed to return to MControl and Mute to enter the Die subroutine that

immediately halts the robot. To go one step further, indicators of the robot’s current state could be

displayed on the LCD screen.

Another problem may arise from errors in the approaching the desired angle from the origin that result

from non-uniform motor rotation. The turning angle is not guaranteed to be exact, which can result in an

accumulation of errors that could noticeably alter the robot’s path from the desired path. To account for

this issue, a second movement solution is currently being implemented. This solution will allow the

DE2Bot to move across a cartesian coordinate system to a desired (x, y) point. The robot should follow a

straight path, which represents the hypotenuse of a triangle formed by the values of the target point in

relation to the robot’s most recent reset position of (0, 0) [4].

Works Cited

[1] Dr Thomas Collins. ECE 2031 Digital Design Laboratory (2017) Final Design Project:Self

 Parking.

 [Online] Available: http://powersof2.gatech.edu/2031/Project/Spring2017Project_SelfParking.pdf

 Accessed on March 20th.

[2] Universal RCA Remote Manual [Online]

 Available: http://powersof2.gatech.edu/resources/RCU300T_DOC_OM.pdf

 Accessed on March 21st.

[3] DE2Bot User’s Manual. [Online]

 Available: http://powersof2.gatech.edu/resources/DE2Bot/DE2BotUsersManual_v5.pdf

 Accessed on March 21st.

[4] Dr Magnus Egerstedt. Control of Mobile Robots [Online]

 Available: https://www.coursera.org/learn/mobile-robot

https://www.coursera.org/learn/mobile-robot

Appendix A: Gantt Chart of Project Timeline

The Gantt Chart estimates the time frame of individual tasks throughout the project development period

and enumerates the sequence and duration of major tasks to be completed.

